通过使用传统的控制器大学难以实现现实世界中的机器人运动的产生,并且需要高度智能处理。在这方面,目前正在研究基于学习的运动世代。然而,主要问题已经改善了对空间不同环境的适应性,但是没有详细研究操作速度的变化。在富有的接触任务中,能够调整操作速度尤为重要,因为在操作速度和力(例如,惯性和摩擦力)之间发生非线性关系,并且它会影响任务的结果。因此,在本研究中,我们提出了一种用于产生可变操作速度的方法,同时适应环境中的空间扰动。所提出的方法可以通过利用少量运动数据来适应非线性。我们通过用固定到机器人尖端的擦除作为富有的接触任务的示例,通过擦除一条线来通过擦除一条线来评估所提出的方法。此外,所提出的方法使得机器人能够比人类运营商更快地执行任务,并且能够接近控制带宽。
translated by 谷歌翻译
Search and Rescue (SAR) missions in remote environments often employ autonomous multi-robot systems that learn, plan, and execute a combination of local single-robot control actions, group primitives, and global mission-oriented coordination and collaboration. Often, SAR coordination strategies are manually designed by human experts who can remotely control the multi-robot system and enable semi-autonomous operations. However, in remote environments where connectivity is limited and human intervention is often not possible, decentralized collaboration strategies are needed for fully-autonomous operations. Nevertheless, decentralized coordination may be ineffective in adversarial environments due to sensor noise, actuation faults, or manipulation of inter-agent communication data. In this paper, we propose an algorithmic approach based on adversarial multi-agent reinforcement learning (MARL) that allows robots to efficiently coordinate their strategies in the presence of adversarial inter-agent communications. In our setup, the objective of the multi-robot team is to discover targets strategically in an obstacle-strewn geographical area by minimizing the average time needed to find the targets. It is assumed that the robots have no prior knowledge of the target locations, and they can interact with only a subset of neighboring robots at any time. Based on the centralized training with decentralized execution (CTDE) paradigm in MARL, we utilize a hierarchical meta-learning framework to learn dynamic team-coordination modalities and discover emergent team behavior under complex cooperative-competitive scenarios. The effectiveness of our approach is demonstrated on a collection of prototype grid-world environments with different specifications of benign and adversarial agents, target locations, and agent rewards.
translated by 谷歌翻译
Deep learning (DL) has become a driving force and has been widely adopted in many domains and applications with competitive performance. In practice, to solve the nontrivial and complicated tasks in real-world applications, DL is often not used standalone, but instead contributes as a piece of gadget of a larger complex AI system. Although there comes a fast increasing trend to study the quality issues of deep neural networks (DNNs) at the model level, few studies have been performed to investigate the quality of DNNs at both the unit level and the potential impacts on the system level. More importantly, it also lacks systematic investigation on how to perform the risk assessment for AI systems from unit level to system level. To bridge this gap, this paper initiates an early exploratory study of AI system risk assessment from both the data distribution and uncertainty angles to address these issues. We propose a general framework with an exploratory study for analyzing AI systems. After large-scale (700+ experimental configurations and 5000+ GPU hours) experiments and in-depth investigations, we reached a few key interesting findings that highlight the practical need and opportunities for more in-depth investigations into AI systems.
translated by 谷歌翻译
When beginners learn to speak a non-native language, it is difficult for them to judge for themselves whether they are speaking well. Therefore, computer-assisted pronunciation training systems are used to detect learner mispronunciations. These systems typically compare the user's speech with that of a specific native speaker as a model in units of rhythm, phonemes, or words and calculate the differences. However, they require extensive speech data with detailed annotations or can only compare with one specific native speaker. To overcome these problems, we propose a new language learning support system that calculates speech scores and detects mispronunciations by beginners based on a small amount of unannotated speech data without comparison to a specific person. The proposed system uses deep learning--based speech processing to display the pronunciation score of the learner's speech and the difference/distance between the learner's and a group of models' pronunciation in an intuitively visual manner. Learners can gradually improve their pronunciation by eliminating differences and shortening the distance from the model until they become sufficiently proficient. Furthermore, since the pronunciation score and difference/distance are not calculated compared to specific sentences of a particular model, users are free to study the sentences they wish to study. We also built an application to help non-native speakers learn English and confirmed that it can improve users' speech intelligibility.
translated by 谷歌翻译
We consider task allocation for multi-object transport using a multi-robot system, in which each robot selects one object among multiple objects with different and unknown weights. The existing centralized methods assume the number of robots and tasks to be fixed, which is inapplicable to scenarios that differ from the learning environment. Meanwhile, the existing distributed methods limit the minimum number of robots and tasks to a constant value, making them applicable to various numbers of robots and tasks. However, they cannot transport an object whose weight exceeds the load capacity of robots observing the object. To make it applicable to various numbers of robots and objects with different and unknown weights, we propose a framework using multi-agent reinforcement learning for task allocation. First, we introduce a structured policy model consisting of 1) predesigned dynamic task priorities with global communication and 2) a neural network-based distributed policy model that determines the timing for coordination. The distributed policy builds consensus on the high-priority object under local observations and selects cooperative or independent actions. Then, the policy is optimized by multi-agent reinforcement learning through trial and error. This structured policy of local learning and global communication makes our framework applicable to various numbers of robots and objects with different and unknown weights, as demonstrated by numerical simulations.
translated by 谷歌翻译
In this paper, we present a solution to a design problem of control strategies for multi-agent cooperative transport. Although existing learning-based methods assume that the number of agents is the same as that in the training environment, the number might differ in reality considering that the robots' batteries may completely discharge, or additional robots may be introduced to reduce the time required to complete a task. Therefore, it is crucial that the learned strategy be applicable to scenarios wherein the number of agents differs from that in the training environment. In this paper, we propose a novel multi-agent reinforcement learning framework of event-triggered communication and consensus-based control for distributed cooperative transport. The proposed policy model estimates the resultant force and torque in a consensus manner using the estimates of the resultant force and torque with the neighborhood agents. Moreover, it computes the control and communication inputs to determine when to communicate with the neighboring agents under local observations and estimates of the resultant force and torque. Therefore, the proposed framework can balance the control performance and communication savings in scenarios wherein the number of agents differs from that in the training environment. We confirm the effectiveness of our approach by using a maximum of eight and six robots in the simulations and experiments, respectively.
translated by 谷歌翻译
图形数据库(GDB)启用对非结构化,复杂,丰富且通常庞大的图形数据集的处理和分析。尽管GDB在学术界和行业中都具有很大的意义,但几乎没有努力将它们与图形神经网络(GNNS)的预测能力融为一体。在这项工作中,我们展示了如何无缝将几乎所有GNN模型与GDB的计算功能相结合。为此,我们观察到这些系统大多数是基于或支持的,称为标记的属性图(LPG)的图形数据模型,在该模型中,顶点和边缘可以任意复杂的标签和属性集。然后,我们开发LPG2VEC,这是一种编码器,将任意LPG数据集转换为可以与广泛的GNN类直接使用的表示形式,包括卷积,注意力,消息通话,甚至高阶或频谱模型。在我们的评估中,我们表明,LPG2VEC可以正确保留代表LPG标签和属性的丰富信息,并且与与图形相比,与与图形相比,它提高了预测的准确性,而不管有针对性的学习任务或使用过的GNN模型,多达34%没有LPG标签/属性。通常,LPG2VEC可以将最强大的GNN的预测能力与LPG模型中编码的全部信息范围相结合,为神经图数据库铺平了道路,这是一类系统,其中维护的数据的绝大复杂性将从现代和未来中受益图机学习方法。
translated by 谷歌翻译
光学相干断层扫描(OCT)是微尺度的体积成像方式,已成为眼科临床标准。 OCT仪器图像通过栅格扫描整个视网膜上的聚焦光点,从而获取顺序的横截面图像以生成体积数据。收购期间的患者眼动作带来了独特的挑战:可能会发生非刚性,不连续的扭曲,从而导致数据和扭曲的地形测量差距。我们提出了一种新的失真模型和相应的全自动,无参考优化策略,用于在正交栅格扫描,视网膜OCT量中进行计算运动校正。使用新型的,域特异性的时空参数化,可以首次连续校正眼睛运动。时间正则化的参数估计提高了先前空间方法的鲁棒性和准确性。我们在单个映射中在3D中单独校正每个A-SCAN,包括OCT血管造影协议中使用的重复采集。专业的3D前向图像扭曲将中位运行时间降低到<9 s,足够快地供临床使用。我们对18名具有眼病理学的受试者进行了定量评估,并在微扫描过程中证明了准确的校正。横向校正仅受眼震颤的限制,而亚微米可重复性是轴向可重复性的(中位数为0.51 UM中位数),这比以前的工作有了显着改善。这允许评估局灶性视网膜病理学的纵向变化,作为疾病进展或治疗反应的标志,并承诺能够使多种新功能(例如Suppersmplempled/Super-Supersmpled/Super-Super-Super-Super-Spemply/Super-Supertolution Reponstruction and Ransition and Anallys in Dealitaligy Eye the Neurologation疾病中发生的病理眼运动分析。
translated by 谷歌翻译
成倍增长的模型大小驱动了深度学习的持续成功,但它带来了过度的计算和记忆成本。从算法的角度来看,已经研究了模型的稀疏和量化以减轻问题。从体系结构的角度来看,硬件供应商提供了张量核心以进行加速。但是,由于严格的数据布局要求以及缺乏有效操纵低精度整数的支持,因此从稀疏的低精度矩阵操作中获得实践加速非常具有挑战性。我们提出了Magicube,这是一个高性能的稀疏矩阵库,用于张量芯上的低精度整数。 Magicube支持SPMM和SDDMM,这是深度学习的两个主要稀疏操作。 NVIDIA A100 GPU的实验结果表明,Magicube平均在供应商优化的库中平均达到1.44倍(高达2.37倍)的速度,用于稀疏内核,而在最先进的艺术品上进行了1.43倍的速度,具有可比的准确性。端到端稀疏变压器推断。
translated by 谷歌翻译
数据增强是使用深度学习来提高对象识别的识别精度的重要技术。从多个数据集中产生混合数据(例如混音)的方法可以获取未包含在培训数据中的新多样性,从而有助于改善准确性。但是,由于在整个训练过程中选择了选择用于混合的数据,因此在某些情况下未选择适当的类或数据。在这项研究中,我们提出了一种数据增强方法,该方法根据班级概率来计算类之间的距离,并可以从合适的类中选择数据以在培训过程中混合。根据每个班级的训练趋势,对混合数据进行动态调整,以促进培​​训。所提出的方法与常规方法结合使用,以生成混合数据。评估实验表明,提出的方法改善了对一般和长尾图像识别数据集的识别性能。
translated by 谷歌翻译